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A globally regularized system of differential equations of the motion of a point mass with respect to the main centre of attraction 
is set up within the fr~aaework of the many-body problem, taking into account perturbations of gravitating points performing 
circular motions about the centre. Formulae of the first approximation of the solution of the system are derived. An asymptotic 
expansion of the general solution of the equivalent canonical equations describing the motion of a point mass is proposed using 
the zeroth (Kepler) and first approximations. The region of expansion of the solution in series in powers of the initial values of 
the phase coordinates .'rod a parameter is determined. @ 1997 Elsevier Science Ltd. All fights reserved. 

Existing asymptotic representations of the solution of the many-body problem contain initial terms of 
the expansions in powers of regular time [1], of the sequence of Heard approximations in certain regions 
of phase space [2, 3], and the first approximation in the neighbourhood of the generating solution [4]. 

The method of constructing a solution of a version of the many-body problem proposed below can 
be regarded as a supplement to the above papers in the sense that it provides an accurate representation 
of the regularized orbits of the relative motion of a point mass. 

Consider a medaanieal system consisting of n points M 1 , . . . ,  Mn with masses m l , . . . ,  mn. Suppose 

~ is the radius vector of the point Mj in a certain inertial orthogonal system of coordinates. Within the 
amework of the Newtonian n-body problem the equation of motion of the point M2 with respect to 

the point M1 has t]he form [5] 

.. ~r ~ ~ +~-R, r + _-Ty = - y .  d i 
r i=3 " Ri 

(1) 

~t = Y(ml + m2), ~i = ~mi, r = r 2 - rl, Ri = ri - rl, di = r - R i 

(T is the gravitational constant). 
In order to com,ert the first part of the equation we will introduce the following variables 

ql = 2R~2(Ri " r - r2  / 2), tp = (1 -q i )  -~  -1  (2) 

The equation 

r i=3 -~-3~ [q~iRi- ( l+gi)r]=f  (3) 

is then equivalent to Eq. (1) by virtue of relations (2). 
We will further assume that the point Mi (i = 3 , . . . ,  n) moves with respect to M1 in a circular orbit 

of radius Ri, given by the equation [6] 

VR: ) VR: ) 

in which Eio is the initial value of the eccentric anomaly Ei, while the vectors h~ and B i a r e  constants. 
From Eq. (3), using the Sundman transformation dt = rds and the Kustaanheimo--Stiefel transformation 
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r =  A(u)u, r = u  2, u = ( u  l,u2,u3,u4) r 

I u' -" -" "1 
A(u)= u 2 u I -u  4 -u  3 

U 3 U 4 N I U 2 
(4) 

we obtain the regularized system of equations [6] 

h n 2 
U ' - - - -W,  W ' = - - - - U d "  ~"~ ~[iU [ . . T n  " ~ - 3  t~ i /X  I I  i -- u2(l + ~0 i ) u ]  ( 5 )  

2 i=3 2Ri 

in which u is the KS-position vector and the prime denotes differentiation with respect to s. 
The above equations enable us to write equations for the variable % the total mechanical energy 

(--h) of the point M2 and the time t as follows: 

k0; = R? ~V~ '  [,-~i' r + 2(R,, Au')- 2(r ,  Au') 

h ' = - 2 ( u ' ,  Arf), t ' = u  2 
(6) 

Hence, we have compiled a globally regularized system of equations (5), (6) in the phase variables 
u, w, cp i, h, t. We will assume that at the instant t = 0 (s = 0) we are given the initial values of r0 and i'0, 
which, by virtue of the transition regularization formulae, define the initial values u (°), w (°). 

We will consider the following procedure for finding a solution of the Cauchy problem for system of 
equations (5), (6). 

We will take as the initial zeroth approximation of the solution of the universal Kepler solution, 
denoted by the subscript c [6] 

u c = c o (hcs 2 / 2)u (°) + sq (hc s2 12)w (°) 

(7) 
hc = g l ro - r212, t c = r~s + lAes3 C3 ( 2hc s2 ) 

(p i¢=(1-q ic ) -~ - l ,  q i c=2Ri '2 (R i . rc - r ) /2 ) ,  r c ~ R  i 

Here r n and e are the radius of the pericentre and the eccentricity of the Kepler orbit, respectively, 
while Cj(" ) are the symbols of the Stumpff functions. 

It should be noted that the function to(s) is invertible with respect to the argument s. 
Starting from the third equation of (7) we obtain the relation [7] 

tc n _ ( t c )  ge 

The quantities Qn are found from the recurrence formulae 

0.+, = ± Y. o = 
n k=l 30 r~ 

with the initial value 

QI (0) = -03c3 (2hc02) 

We introduce the parameter ~ = max/gi, for which gi = ~)~, and we write the first approximation of 
the solution of system (5), (6) with respect to ~, as follows: 

u(t)=uc+LAu, t ° )=tc+kAt ,  h ° )=hc+kAh  

From (5) we can write an equation for Au in the form 
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Ah n 2 
(Algl)"t+ hc Au =---u c -I- Z ~t'iuc [" ATr= Lwicl,:,, i - u~ (1 + q~i¢)Uc ] = {g, (s)} 

2 2 i=3 -,-i 

2 s Ah=-~! (Uc, Arcfc)ds 

in which gk(s) is an abbreviated form of writing the right-hand side of  the kth equation. 
Using the method of variation of constants, we can write the solution of Eq. (8) as 
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(8) 

(9) 

Correspondingly we have 

s 
At = 2j (uc, Au) ds 

0 

To find the expansion of the solution it is best to consider the following Hamiltonian referred to regular 
time s [6] 

F = 12 w2 + I WoU2 + 14 V(u0' u)u2 - ~t4 (10) 

in which the canonical variables Uk and Wk, by virtue of [6], are Uo = t/2 and Wo = h/2, while for values 
of the subscript k = 1, 2, 3, 4, the quantities Uk and Wk are the components of the vectors of parametric 
position and paranletric velocity, respectively. 

Provided that, i~a the interval of the time of motion considered s e I the gravitating points Mi 
(i I> i0) are external to the point M2 in the sense that the inequality r < R/0 is satisfied, we can write the 
potential function V/0 (u0, u) in the form [8] 

_ ~  ~ ~i rk 
V~° = i=io *=2 r R  i 

R---r;r P, (cos ), cosH; = rR,. (11) 

If for s E /, the point Mi (i < io) is internal with respect to M2 in the sense that the inequality 
r >- Rio_ 1 is satisfied, the potential function Vi0 has the form [6] 

Vio = - ~ !  ~ (It + Iti)mk ,~k . . . . .  . - -  -""7"-~, • t~ (cosHi)  
i=3 k=2 (ml + m i ) r - - "  !¢i k 

(12) 

We will assume that the inequality r < R is satisfied over the whole interval 0 ~< s ~< a considered. 
The following expansion then holds 

R -  r ( R -  r )  2 / (13) ±=±II+ 
r R 

Note that if r < R3, i0 = 3, we have Vio = 0, while if r > Rn, i0 = n + 1 we have V/0 = 0. Hence, we 
obtain 

~ 

V ( Uo, u)=V/o+v~,, s ~ l 

We will compile the solution of the canonical system of equations with Hamiltonian (10) 

(14) 

3F ~F 
U ' =  0W" W'=- - -~U,  U = ( u ° '  ul' u4)' W = ( w ° '  wl . . . .  w4) (15) 

using the approxinlations obtained in the form of asymptotic expansions 
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U = U c +  ~ ~Ln Wc) ,  w = + • ~.t P(")(U¢, W~) 
n = l  • n = l  • 

To determine the vector function q(n), p(n) we will use the Deprit-Kamel algorithm [9] 

q(n) 0F~ ~-I O(n-I)F 

= 0Wc + j=l ~" Cjn-lqj'~-j' L0 

(16) 

j - i  
_ cm- lB  qji = Bjq (i) ~. j-I mqj-m,i, qll = Blq 0), 

The result of applying the operator Bi to the scalar function ¥ leads to the calculation of  the Poisson 
bracket BiV = {V, Fi}. 

When solving the Cauchy problem using (16) the function V(uo, u) for each intervalI  C [0, ot] is found 
from (14). 

Note that an iterative method of determining the elements of the orbits in the planetary many-body 
problem using polynomial-exponential series, and also in the form of power series with quasi-periodic 
coefficients, based on a system of subroutines of action with corresponding series, was developed in [7]. 

In conclusion we will obtain the region of  the expansion of the solution of system (15) in an absolutely 
convergent series in powers of the initial values of  the phase coordinates and the parameter ~,. With 
the limitation that an arbitrary finite number of  terms are retained in (11)--(13), the general form of 
the right-hand sides of Eqs (5) is expressed by the formula 

N 
F =  ~ X X Z (s) 

i=3 /=1 ×,/0,.../8 ×,/0,..-/8 

".X I 1 I 4 /5 h v  
A, U l ...U 4 W I ... W~ ,~.i(" ) 

1 = × + l  0 +11+...+18 

Here Z(s),,, t0...ts are certain variable coefficients. The symbol Y/0,i(') denotes a polynomial of degree 
10 of the argument cos Ei, sin El. 

Hence, by virtue of Perron's theorem [10], for the finite interval 0 ~< s ~< tx in the region defined by 
the inequality 

--+a2L (lu°kl+ ] k--0 ( "-'~--'k ~ Iw°klbk+5/~ n=l ~" nn-le-nO°~+l)n! (17) 

the functions u k and Wk, which satisfy (15), can be expanded in absolutely convergent series in powers 
of X and initial values with coefficients which depend on s. Perron-type series, in view of the fact that 
their terms can be permuted when inequality (17) is satisfied, are identical with (16). 

The constants a, bk, bk+5 are found by estimating the coefficients of the expansions of  the right-hand 
sides of (15) using the well-known rule [10]. The series on the right-hand side of inequality (17) converges 
by d'Alembert's test. 
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